Fabrication of the SQUID with $Nb/Ru/Sr_2RuO_4$ junction

R. Ishiguro^a, M. Yakabe^a, T. Nakamura^b, E. Watanabe^c, D. Tsuya^c, K. Oosato^c, Y. Maeno^b, and H. Takayanagi^{d,a}

^aDepartment of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601,Japan

^bDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan ^cNanotechnology Innovation Center, NIMS, 1-2-1 sengen, Tsukuba, Ibaraki 305-0047, Japan

^dInternational Center for Materials Nanoarchitectonics(MANA), National Institute for Materials Science(NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

We have fabricated Nb-Sr₂RuO₄ hybrid dc superconducting quantum interference devices (SQUIDs) using a Nb/Ru/Sr₂RuO₄ junction. The superconducting loop is composed of Nb, Sr₂RuO₄ and two Nb/Ru/Sr₂RuO₄ junction, and made by building a Nb bridge between two individual Ru microinclusions at the *ab*-plane surface of the Ru-Sr₂RuO₄ eutectic system. We measure the supercurrent between Nb and Sr₂RuO₄ part of the SQUID, which oscillates with every flux quantum through the SQUID loop.