Physical properties of the novel layered cobalt oxyphosphide $Sr_4Sc_2Co_2P_2O_6$

S. Okada^a, Y. Kamihara^{b,c}, N. Ohkubo^a, S. Ban^a, M. Matoba^b, and T. Atou^d

^aLaboratory of Physics, College of Science and Technology, Nihon University, Funabashi, Japan ^bDepartment of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan

^cTransformative Reserch-Project on Iron Pnictides (TRIP), Japan Science and Technology Agency (JST), Tokyo, Japan

^dMaterials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan

A nobel layered cobalt oxyphosphide $Sr_4Sc_2Co_2P_2O_6$ crystallizes in a layered structure which represents an alternative stack of ThCr₂Si₂ type Co_2P_2 layer and K_2NiF_4 type $Sr_4Sc_2O_6$ layer. This material has a similar structure to that of $Sr_4Sc_2Fe_2P_2O_6$ which exhibits superconductivity below 17 K¹.

The resistivity of $Sr_4Sc_2Co_2P_2O_6$ is 4.5 m Ω cm at room temperature, and decreases with decreasing temperature. The thermoelectric power of $Sr_4Sc_2Co_2P_2O_6$ is -12 μ V/K at room temperature, and it decreases with decreasing temperature, and rapidly increases below 50 K. The thermoelectric power of $Sr_4Sc_2Co_2P_2O_6$ demonstrates metallic temperature dependence. These features are similar to those of $Sr_4Sc_2Fe_2As_2O_6^2$, while polarity of the thermoelectric power does not become positive in $Sr_4Sc_2Co_2P_2O_6$. In our presentation, we will demonstrate magnetic properties of $Sr_4Sc_2Co_2P_2O_6$.

¹H. Ogino *et al.* Supercond. Sci. Technol. **22** 075008 (2009).

²Y. L. Xie *et al.* Europhys. Lett. **86** 57007 (2009).