${ m Chemical}$ and Physical Pressure Studies of Phosphorous Substituted BaFe $_2{ m As}_2$

Lina E. Klintberg^{*a*}, S. K. Goh^{*a*}, Y. Nakai^{*c*, *b*}, S. Kasahara^{*d*}, K. Ishida^{*c*, *b*}, Y. Ihara^{*b*}, M. L. Sutherland^{*a*}, Y. Shibauchi^{*b*}, Y. Matsuda^{*b*}, and T. Terashima^{*d*}

^aCavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
 ^bDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
 ^cTRIP, JST, Sanbancho Building, 5, Sanbancho, Chiyoda, Tokyo 102-0075, Japan
 ^dResearch Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan

Replacing arsenic by phosphorous in BaFe₂As₂ induces superconductivity without introducing extra charge carriers; this isoelectronic substitution emulates the effect of physical pressure and is consequently known as chemical pressure. Applying physical pressure on substituted BaFe₂(As_{1-x}P_x)₂ therefore provides an interesting way to compare and contrast the interplay between chemical and physical pressure. We have performed AC susceptibility measurements on BaFe₂(As_{1-x}P_x)₂ under hydrostatic pressure and found a maximum T_c of 31 K for all combination of chemical and physical pressures. ¹ Additionally, we have studied the anisotropic superconducting properties of the optimally substituted BaFe₂(As_{1-x}P_x)₂ with x = 0.35, and found that the superconducting properties become more anisotropic under pressure despite a decreasing T_c. ²

¹L. E. Klintberg, S. K. Goh et al., J. Phys. Soc. Jpn. 79, 123706 (2010) ²S. K. Goh, Y. Nakai et al., Phys. Rev. B 80, 094502 (2010)