27 Al- and 95 Mo-NMR Study on Noncentrosymmetric Superconductor Mo_3Al_2C

Y. Ihara^{*a*}, Y. Kimura^{*a*}, **K. Kumagai**^{*a*}, E. Bauer^{*b*}, G. Rogl^{*c*}, and P. Rogl^{*c*}

^aDepartment of Physics, Faculty of Sciences, Hokkaido University, Sapporo 060-0810, Japan ^bInstitute of Solid State Physics, Vienna University of Technology, A-1040 Wien, Austria ^cInstitute of Physical Chemistry, University of Vienna, A-1090 Wien, Austria

Superconductivity on a crystal without inversion center is of great interest as the absence of parity can induce a novel superconducting (SC) pairing state. The first discovered noncentrosymmetric superconductor (NCS) CePt₃Si undergoes a magnetic transition at $T_N \simeq 2.2$ K before the SC transition at $T_c \simeq 0.75$ K. The strong electron-electron interactions complicate the electronic states where superconductivity appears.¹ A weakly-correlated NCS, Li₂Pt₃B then has been investigated to extract a purely crystalstructure involved effect on superconducting pairs. In another weakly-correlated NCS Mo₃Al₂C with $T_c \simeq 9$ K, a power law temperature dependence of specific heat was clearly observed in the SC state.²,³ Rather high T_c of Mo₃Al₂C allows us to study the SC state using various experimental techniques. We have performed ²⁷Al- and ⁹⁵Mo-NMR experiments on Mo₃Al₂C to explore both the normal and SC state. Exotic SC properties of this compound will be discussed on the basis of the results at low temperatures.

¹E. Bauer, et al. Phys. Rev. Lett. **92**, 027003 (2004).

²E. Bauer, et al., Phys. Rev. B 82, 064511 (2010)

³A. B. Karki, et al., Phys. Rev. B 82, 064512 (2010)