NMR Study of Layered Transition Metal Ditelluride (Ir,Pt)Te₂

K. Magishi^{*a*}, T. Saito^{*a*}, K. Koyama^{*a*}, N. Matsumoto^{*b*}, and S. Nagata^{*b*}

^a Institute of Socio-Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan
^b Department of Materials Science, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

Layered transition metal dichalcogenide IrTe₂ shows the anomalous behavior with a hysteresis in temperature around 270 K in electrical and magnetic properties, originating from a structure deformation.¹ The NMR measurement suggests that a simple metallic state realizes in both high- and low- temperature region and the density of states at Fermi surface $N(E_{\rm F})$ is reduced below the transition temperature.² In contrast, PtTe₂ with the same CdI₂ structure type shows no anomaly. Quite recently, it is reported that the superconductivity exhibits in $Ir_{1-x}Pt_xTe_2$ with the maximum of $T_{\rm C} = 3.1$ K for x = 0.04.³ Thus, further studies are necessary to clarify the microscopic electronic states related with the superconductivity. It is quite helpful to make use of the NMR method for a study of local electronic properties. In this presentation, we present the ¹²⁵Te and ¹⁹⁵Pt NMR results of (Ir,Pt)Te₂ and discuss about them at the conference.

¹N. Matsumoto *et al.*, J. Low Temp. Phys. **117**, 1129 (1999).

²K. Mizuno *et al.*, Physica B **312-313**, 818 (2002).

³S. Pyon *et al.*, presented at International Workshop on Novel Superconductors and Super Materials 2011 (NS^22011).