Effects of the order parameter symmetry on the vortex core structure in the iron pnictides

P. Belova, I. Zakharchuk, K. B. Traito, and E. Lähderanta

Lappeenranta University of Technology, P.O.Box 20, FI-53851, Lappeenranta, Finland

Effects of the order parameter symmetry on the cutoff parameter ξ_h (determining from the magnetic field distribution) in the mixed state are investigated in framework of quasiclassical Eilenberger theory for isotropic s^{\pm} and for s_{++} pairing symmetries of superconductors using computational methods. In s^{\pm} pairing symmetry the gap function has opposite sign and equal absolute values of the electron and hole pockets of the Fermi surface and in s_{++} pairing symmetry the gap function has the same sign of the electron and hole pockets of the Fermi surfaces. The s^{\pm} pairing symmetry results in different effects of intraband (Γ_0) and interband (Γ_{π}) impurity scattering on ξ_h . It is found that ξ_h/ξ_{c2} decreases with the Γ_0 leading to values much less than those predicted by the analytical Ginzburg-Landau (AGL) theory for high Γ_0 . At very high Γ_0 the interband scattering suppresses ξ_h/ξ_{c2} considerably less then the one in the whole field range making it flat. If Γ_0 and Γ_{π} are small and equal then the $\xi_h/\xi_{c2}(B/B_{c2})$ dependence behaves like that of the AGL model and shows a minimum with value much more than that obtained for s_{++} superconductors. With high Γ_{π} the dependence of $\xi_h/\xi_{c2}(B/B_{c2})$ resides above the AGL curve. Such behavior is quite different from that in s_{++} pairing symmetry where intraband and interband scattering rates act in a similar way and ξ_h/ξ_{c2} decreases monotonously with impurity scattering and resides below the AGL curve.