Low-Temperaure Thermoelectric Properties for Single Crystals of the Electron-Doped Perovskites $Sr_{1-x}Ca_xTi_{1-y}Nb_yO_3$

J. Fukuyado^a, K. Narikiyo^a, M. Akaki^b, H. Kuwahara^b, and **T. Okuda**^a

^aDepartment of Nano-Structures and Advanced Materials, Kagoshima University, Kagoshima, Japan ^bDepartment of Physics, Sophia University, Tokyo, Japan

Electron-doped perovskite SrTiO₃ is known to be one of candidates for a good *n*-type thermoelectric (TE) oxide¹. In this study, we have tried to improve the TE property of the lightly-electron-doped SrTiO₃ single crystal below room temperature by the substitutions of Ca and Nb for Sr and Ti². We found that SrTi_{0.99}Nb_{0.01}O₃ shows a large power factor of about 90 μ W/K² cm at 50 K and the largest dimensionless TE figure-of-merit ($ZT \sim 0.07$) below 60 K among the ever reported materials, which are perhaps due to the distinct electron-phonon interaction. On the other hand, the Ca²⁺ substitution for Sr²⁺ increases the ZT at 300 K for Sr_{1-x}Ca_xTi_{0.97}Nb_{0.03}O₃ from about 0.08 to about 0.105. The enhancement of ZT originates not only in a large reduction of a thermal conductivity due to an introduced randomness into the crystal structure and an induced structural transition, but also in an unexpected enhancement of Seebeck coefficient by the Ca substituiton.

¹T. Okuda, *et al.*, Phys. Rev. B **63**, 113104 (2001).

²J. Fukuyado, *et al.*, in preparation.