Fermi Surfaces of the Iron-Pnictides $LaFe_2P_2$ and $CeFe_2P_2$

J. Wosnitza^{*a*}, O. Ignatchik^{*a*}, S. Blackburn^{*b*}, B. Prévost^{*a*}, A.D. Bianchi^{*b*}, M. Côté^{*b*}, G. Seyfarth^{*c*}, C. Capan^{*d*}, Z. Fisk^{*d*}, R.G. Goodrich^{*e*}, M. Bartkowiak^{*f*}, and I. Sheikin^{*g*}

^aHochfeld-Magnetlabor Dresden (HLD), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

 ${}^b\mathrm{D}\acute{\mathrm{e}}$ partment de Physique, Université de Montréal, Montréal, Canada

^cDPMC, University of Geneva, Genève, Switzerland

 $^d\mathrm{Department}$ of Physics and Astronomy, University of California, Irvine, USA

 $^e\mathrm{Department}$ of Physics, George Washington University, Washington, USA

^fLaboratory for Developments and Methods, Paul Scherrer Institute, Villigen, Switzerland

^gLaboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble, France

We report on a comprehensive study of the Fermi surfaces (FS) of the iron-pnictide compounds $LaFe_2P_2$ and $CeFe_2P_2$ by use of de Haas-van Alphen (dHvA) experiments and band-structure calculations. The dHvA data were gained using a capacitive torque cantilever in fields up to 18 T in Dresden and up to 32 T in Grenoble. The band-structure calculations were done fully relativistically in the framework of density-functional theory. For $LaFe_2P_2$, we find strongly corrugated quasi-two-dimensional (2D) FS sheets in addition to three-dimensional bands. The calculations can nicely explain most of the observed dHvA frequencies. For $CeFe_2P_2$, we find a much richer dHvA frequency spectrum with no 2D bands indicating that the Ce 4f electrons are of importance for the electronic band structure.