Visualization of Different Regimes of Localized Superconductivity in Superconductor-Ferromagnet-Hybrids by Low-Temperature Scanning Laser Microscopy

R. Werner^a, A. Yu. Aladyshkin^b, J. Fritzsche^c, S. Guénon^a, R. B. G. Kramer^c, I. M. Nefedov^b, V. V. Moshchalkov^c, R. Kleiner^a, and D. Koelle^a

^aPhysikalisches Institut and Center for Collective Quantum Phenomena, Universität Tübingen, Germany ^bInstitute for Physics of Microstructures RAS, Nizhny Novgorod, Russia ^cINPAC – Institute for Nanoscale Physics and Chemistry, K.U. Leuven, Belgium

We studied the effect of a stripe-like domain structure in a ferromagnetic BaFe₁₂O₁₉ substrate on the superconducting properties of Pb thin film microbridges. The nonuniform component of the magnetic field, induced by the ferromagnet leads to a complex H - T phase diagram with various localized states such as reverse domain, domain wall and edge superconductivity. Here we report on low-temperature scanning laser microscopy imaging of these nonuniform superconducting states in a Pb bridge with domain walls perpendicular and a Pb bridge with a single straight domain wall along the center of the bridge. At a temperature slightly below T_c and a bias current smaller than the critical current, the scanning laser spot locally destroys superconductivity by heating up the spot area above T_c or reducing the critical current density below the applied bias current density. This results in a global change of the voltage drop ΔV , which is detected by lock-in technique as a function of the beam spot coordinates (x, y). The acquired voltage images $\Delta V(x, y)$ confirm the formation of inhomogeneous superconductivity.