Superconductivity in ZrB_{12} with various boron isotope content

N. Sluchanko^a, S. Gavrilkin^b, K. Mitsen^b, A. Kuznetsov^c, I. Sannikov^c, V. Glushkov^a, S. Demishev^a, A. Azarevich^a, A. Bogach^a, V. Filippov^d, and N. Shitsevalova^d

^aA.M.Prokhorov General Physics Institute of RAS, 38, Vavilov str., Moscow 119991, Russia

^bP.N.Lebedev Physical Institute of RAS, 53 Leninskii prospect, 119991 Moscow, Russia

^cNational Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia

^dI. Frantsevich Institute for Problems of Materials Science NAS, 3, Krzhyzhanovsky str., 03680, Kiev, Ukraine

In the unconventional superconductor ZrB_{12} with phase transition from type-I to type II/1^{1,2} the heat capacity and magnetization measurements have been carried out on high quality single crystals with various boron isotopes. Critical temperature $T_{\rm C}\approx 6$ K and thermodynamic field $H_{\rm C}\approx 420$ G, density of electron states' renormalization effect, electron-phonon interaction $\lambda \sim 0.23$ and superconducting gap $2\Delta(0)\sim 20.5$ K have been estimated and compared between $\operatorname{Zr}^{10}B_{12}$, $\operatorname{Zr}^{11}B_{12}$ and $\operatorname{Zr}^{nat}B_{12}$ compounds. Our experiments reveal only slight changes both in the aforementioned characteristics and in the frequency of quasi-local mode ($\Theta_{\rm E}\sim 180$ K), which is responsible for BCS-type superconductivity in zirconium dodecaboride. An analysis of field dependent specific heat in the type-II/1 superconducting state allows evaluating the vortex-core contribution in the $\operatorname{Zr}^{\rm N}B_{12}$ series under investigation.

¹J.Auer and H.Ullmaier, Phys. Rev. B **7**, 256 (1973). ²Y.Wang, R.Lortz, Y.Paderno et al., Phys. Rev. B **72**, 024548 (2005).