Coexistence of ferromagnetism and superconductivity of nanostructured singlephase $\mathrm{Bi}_3\mathrm{Ni}$ **T. Herrmannsdörfer**^a, R. Skrotzki^a, J. Wosnitza^a, D. Köhler^b, R. Boldt^b, and M. Ruck^b ^aDresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany ^bDepartment of Chemistry and Food Chemistry, TU Dresden, D-01062 Dresden, Germany Here we demonstrate the unique coexistence of superconductivity and ferromagnetism in single-phase Bi₃Ni nanostructures. For the production of the structurally confined intermetallic compound, we have developed novel chemical-reaction paths. Under variation of preparation parameters, nanostructures in several aspect ratios have been manufactured. We have characterized their magnetic and superconducting properties by means of magnetometry and electrical-transport measurements. Other than in bulk geometry, submicron-sized particles, spherical nanoclusters, and quasi one-dimensional nanoscaled strains of single-phase Bi₃Ni undergo ferromagnetic order. Superconductivity in nanostructured Bi₃Ni emerges in the ferromagnetically ordered phase and is stable up to remarkably high magnetic fields. Uniquely, superconducting and ferromagnetic material properties evidently complement each other in structurally confined Bi₃Ni. Both, Ferromagnetic hysteresis and zero resistance is observed. The coexistence of superconductivity with ferromagnetic order in Bi₃Ni nanostructures would most likely be possible in the case of triplet pairing. ¹ ¹T. Herrmannsdöerfer et al, Phys. Rev. B **83**, 140501(R) (2011).