Flux-Line Lattice State in FeAs-Based Superconductor (Ba,K)Fe₂As₂

K. Ohishi*,†a, Y. Ishii*,‡a, I. Watanabe*a, H. Fukazawa*b, T. Saitob, Y. Kohori*b, K. Kihou*c, C.H. Lee*c, H. Kito*c, A. Iyo*c, and H. Eisaki*c

^aAdvanced Meson Science Laboratory, RIKEN, Wako, Saitama, Japan

^bDepartment of Physics, Chiba University, Chiba, Japan

^cNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

We have observed temperature and magnetic field dependence of penetration depth λ in single crystalline samples of $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ (x = 0.6, 0.7 and 1.0) in order to clarify the superconducting gap mechanism. We have found that T dependence of $1/\lambda^2$ in KFe₂As₂ with $H \parallel c$ and $H \perp c$ are completely different. While the T dependence of $1/\lambda^2$ observed with $H \parallel c$ is well fitted by a two-full-gap model, T-linear behavior is clearly observed below $\sim T_c/2$ with $H \perp c$, suggesting the existence of line node. This result is seemingly contradictory behavior, however, it is well interpreted when we take into account the horizontal line node (line node in ab-plane) in KFe₂As₂¹. At the presentation, we will also report the T and H dependence of λ in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ (x = 0.6, 0.7) and discuss in detail.

- * Also at JST, Transformative Research-Project on Iron Pnictides (TRIP), Tokyo, Japan
- † Present Address: Research Center for Neutron Science & Technology, CROSS, Tokai, Ibaraki, Japan
- ‡ Present Address: Tokyo Medical University, Tokyo, Japan
- ¹S. Graser *et al.*, Phys. Rev. B **81**, 214503 (2010).