Microwave Surface Impedance Measurements of LiFeAs and FeSe_{0.4}Te_{0.6}

H. Takahashi^{a, e}, Y. Imai^{a, e}, T. Okada^{a, e}, S. Komiya^{b, e}, K. Kitagawa^{c, e}, K. Matsubayashi^{c, e}, N. Nakai^d, Y. Nagai^{d, e}, I. Tsukada^{b, e}, M. Takigawa^{c, e}, Y. Uwatoko^{c, e}, M. Machida^{d, e}, and A. Maeda^{a, e}

^aDepartment of Basic Science, the University of Tokyo, Japan

^bCentral Research Institute of Electric Power Industry, Kanagawa, Japan

^cInstitute for Solid State Physics, the University of Tokyo, Chiba, Japan

^dCCSE, Japan Atomic Energy Agency, Tokyo, Japan, also CREST, JST

^eTransformative Research-Project on Iron Pnictides (TRIP), JST

We report results of microwave surface impedance measurements of iron-based superconductors LiFeAs and FeSe_{0.4}Te_{0.6} single crystals. The exponential temperature dependence of London penetration depth $\lambda(T)$ in LiFeAs shows nodeless superconductivity of this material. The temperature dependence of superfruid density $n_s(T)/n_s(0)$ can be fitted by a simple two-gap model¹. On the other hand, $\lambda(T)$ in FeSe_{0.4}Te_{0.6} shows the quadratic temperature dependence, which we believe to be the effect of disorder. Unlike LiFeAs, the simple two-gap model cannot fit $n_s(T)/n_s(0)$ in FeSe_{0.4}Te_{0.6} which shows a positive curvature near T_c . This peculiar temperature dependence can be explained by considering the large temperature dependence of a parameter, l/ξ , where l is an electronic mean free path and ξ is a coherence length. This interpretation is supported by the temperature dependence of quasiparticle conductivity, $\sigma_1(T)$.

¹Y. Imai et al., J. Phys. Soc. Jpn. **80**, 013704 (2011).