Effects of Co Doping on the Transport Behaviors and Superconducting Transition Temperature of $FeSe_{0.4}Te_{0.6}$ single crystals

Y. Imai^{a, c}, F. Nabeshima^{a, c}, Y. Kobayashi^{a, c}, M. Hanawa^{b, c}, I. Tsukada^{b, c}, and A. Maeda^{a, c}

^aDepartment of Basic Science, the University of Tokyo, Tokyo, Japan

^bCentral Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

^cTransformation Research-Project on Iron Pnictides (TRIP), JST, Tokyo, Japan

To clarify the superconducting pairing mechanism of iron-based superconductors, it is important to identify the symmetry of the superconducting order parameter. The so-called s_{\pm} -symmetry has been proposed as the most probable scenario, because the superconductivity appears near the antiferromagnetic phase. The suppression rate of T_c in LaFe_{1-y}Co_yAsO_{0.89}F_{0.11} polycrystals, on the other hand, is too small to be explained by the pair breaking effect expected for s_{\pm} -symmetry. [M. Sato *et al.*, J. Phys. Soc. Jpn. **79** (2010) 014710.] In discussing impurity effect, we have to pay attention to the residual resistivity, ρ_{res} , that is an indicator of the strength of impurity potential, since the T_c suppression rate depends on the impurity potential strongly. However, it is difficult to discuss ρ_{res} in polycrystalline samples because of the existence of grain boundaries. In this study, we measure transport and magnetic properties of Co-doped FeSe_{1-x}Te_x single crystals to discuss both the suppression rate of T_c and ρ_{res} . The T_c of Fe_{1-y}Co_ySe_{0.4}Te_{0.6} single crystals grown by the Bridgman method decreases about 1 K with increasing 1% of Co content. In the presentation, we evaluate the impurity potential of Co based on ρ_{res} and discuss the possible pairing symmetry in Fe_{1-y}Co_ySe_{0.4}Te_{0.6} single crystals.