Two-orbital view on the origin of the material dependence of T_c in the singlelayer cuprates

H. Sakakibara^{*a*}, H. Usui^{*b*}, K. Kuroki^{*a*}, R. Arita^{*c*}, and H. Aoki^{*d*}

^aDepartment of Engineering Science, University of Electro-Communication, Tokyo, Japan ^bDepartment of Applied Physics, University of Electro-Communication, Tokyo, Japan ^cDepartment of Applied Physics, University of Tokyo, Tokyo, Japan ^dDepartment of Physics, University of Tokyo, Tokyo, Japan

While the significant material dependence of T_c even within the single-layer high T_c cuprates has remained a basic puzzle, a recent paper¹ has demonstrated that the usually considered $d_{x^2-y^2}$ orbital is in fact mixed with the d_{z^2} orbital around the Fermi energy, which is shown to affect T_c in the spin-fluctuation mediated pairing with a two-orbital model that incorporates d_{z^2} as well as $d_{x^2-y^2}$. There, the energy offset (ΔE) between the two orbitals has been shown to govern the extent of the d_{z^2} mixture, hence T_c . In the present study, we extend this work to identify which key factors determine ΔE in the cuprates, focusing on the structural difference among broader (La, Hg, Bi, and Tl) single-layer cuprates. We have revealed that the apical oxygen height (h_O) above the CuO₂ plane and the distance (d) between the CuO₂ planes are the important parameters that determine ΔE , thereby causing the material dependence of T_c . This picture enables us to capture the T_c variation among the single-layered cuprates in a simple lattice parameter space.

¹H. Sakakibara *et al.* Phys. Rev. Lett. **105**, 057003(2010).