Investigation of a Proposed QCP in Overdoped Region at $x \sim 0.23$ in $La_{2-x-y}Nd_ySr_xCuO_4$

T. Kakeshita, H. Fujisaki, N. Kanaya, L. Liu, and S. Uchida

Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan

Strong reduction of Tc is seen around x = 1/8 in LTT phase of La-based 214 cuprates. Recent studies of La_{2-x}Ba_xCuO₄ (LBCO) ($x \sim 1/8$), however, demonstrate the existence of superconducting order in a CuO₂ plane even in the static stripe phase. From this, the following picture emerges: (i) superconductivity does not compete, but coexists with stripe order in the CuO₂ plane; (ii) the superconductivity for $x \sim 1/8$ loses coherence along the is strongly suppressed¹. By extending the doping region in LNSCO, Daou et al. suggests presence of a quantum critical point (QCP) at $x \sim 0.23$ which separates the static stripe ordered phase and the overdoped Fermi liquid phase². However, for Nd-free LSCO, the superconducting and non-superconducting regions are separated by the LTO-HTT structural transition at nearly the same x (=0.22). To investigate the presence or otherwise of QCP, we performed optical and transport measurements on crystals with various Nd contents. The result of optical measurement clearly indicates that the c-axis Josephson plasma appears edge below Tc for x = 0.20, whereas no plasma resonance for x = 0.24 which shows apparent SC transition at T~10K. We conclude that both LSCO and LNSCO with x = 0.24 are not bulk superconductors, and that both stripe and SC orders disappear at $x \sim 0.23$.

²Daou *et al.*, Nature Phys. **5**, 31 (2009).