Upper Critical Fields of Electric-Field-Induced Superconductivity in SrTiO₃

T. Nojima^a, K. Ueno^{b, c}, S. Yonezawa^d, M. Kawasaki^{e, f}, Y. Maeno^d, and Y. Iwasa^{e, f}

^aInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan

^bDepartment of Basic Science, The University of Tokyo, Tokyo 153-8902, Japan

^cPRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan

^dDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

^eQPEC and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan

^fCREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan

Recently we succeeded in converting an insulating surface of SrTiO₃ to a superconducting one with the critical temperature $T_c = 0.4$ K purely by electric field effect.¹ This conversion was made possible by high-density electrostatic carrier doping using an electric double layer transistor structure. In this work, the upper critical magnetic fields parallel $(H_{c2\parallel})$ and perpendicular $(H_{c2\perp})$ to the conducting surface were examined by the measurements of the transport properties at temperatures T down to 0.1 K. A vector superconducting magnet allowing precise and accurate alignment of the magnetic field direction with respect to the sample surface was used. The observed H_{c2} data were strongly anisotropic; At T = 0.1 K, $H_{c2\parallel}$ is about fifteen times larger than $H_{c2\perp}$. We also found that $H_{c2\parallel}(T)$ obeys a $(1-T/T_c)^{1/2}$ law near T_c . These results are consistent with the fact that the electric-field-induced superconductivity occurs at the two-dimensional surface.

¹Ueno *et al.* Nature Mater. **7**, 855 (2008).