Inhomogeneity of Superconductivity and Stripe Correlations in the Overdoped Regime of La_{2-x}Sr_xCuO₄ at $x \sim 0.21$ M. $Miyazaki^a$, T. Adachi^a, Y. Tanabe^a, H. Sato^a, K. Kudo^b, T. Nishizaki^b, T. Sasaki^b, N. Kobayashi^b, and Y. Koike^a a Department of Applied Physics, Graduate School of engineering, Tohoku University, Sendai, Japan b Institute for Materials Research, Tohoku University, Sendai, Japan With the aim at investigating the relationship between the anomalous decrease in $T_{\rm c}$, development of the Cu-spin correlation² and the inhomogeneity of superconductivity³ in the overdoped regime of ${\rm La_{2-x}Sr_xCuO_4}$ at $x\sim 0.21$, we have investigated the transport and magnetic properties. It has been found that the temperature dependence of the magnetic susceptibility shows a plateau and the magnetization curve shows the so-called second peak in the superconducting (SC) state at $x\sim 0.21$, both of which are due to the strong vortex pinning in the normal-state regions in the inhomogeneous SC state.⁴ On the other hand, the ab-plane electrical resistivity under magnetic field has revealed that the SC transition curve shifts to the low-temperature side in parallel with increasing field above ~ 10 T at $x\sim 0.21$, which is similar to that observed at $x\sim 1/8$ where the so-called stripe correlations are developed. Accordingly, it is possible that the stripe correlations are developed under the nano-scale inhomogeneity of superconductivity at $x\sim 0.21$. ¹N. Kakinuma et al., Phys. Rev. B **59**, 1491 (1999). ²I. Watanabe et al., unpublished. ³Y. Tanabe *et al.*, J. Phys. Soc. Jpn. **74**, 2893 (2005). ⁴Y. Tanabe *et al.*, J. Phys. Soc. Jpn. **76**, 113706 (2007).