Superconducting Fluctuation and Electric Transport Properties Revealed from the Phase Diagram of Ca-doped Cuprates

Y.-J. Chen^a, P. J. Lin^c, C. H. Pan^d, J.-Y. Lin^b, C. W. Luo^a, K. H. Wu^a, B. Rosenstein^a, J. Y. Jaung^a, and T. M. Uen^a

^aDepartment of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan ^bInstitute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

^cApplied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

^dDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

In this study, we analyzed the temperature-dependent transport properties of Ca-doped YBCO films with various oxygen contents from overdoped region to underdoped region. The second derivative of the temperature-dependent resistivity reveals a rich phase diagram, including the superconducting fluctuation region and pseudogap phase. These experimental results are consistent with the estimation of the fluctuation theory based on a model of the Ginzburg-Landau type. Amplitude fluctuations of Cooper pairs in the vicinity of the transition temperature provide a clear framework in which to understand dynamic properties such as the large Nernst signal observed in disordered superconducting films.