Escape rate measurements of 0, π and 0- π ferromagnetic Josephson junctions

H. Sickinger^{*a*}, T. Gaber^{*a*}, M. Weides^{*b*}, H. Kohlstedt^{*c*}, R. Kleiner^{*a*}, D. Koelle^{*a*}, and E. Goldobin^{*a*}

^aPhysikalisches Institut, Experimentalphysik II and Center for Collective Quantum Phenomena in LISA⁺, University of Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

^bNational Institute of Standards and Technology, 325 Broadway, Boulder CO 80305-3328, USA

^cTechnische Fakultät, Institut für Elektrotechnik und Informationstechnik, Nanoelektronik, Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany

Josephson junctions (JJ) with a ferromagnetic barrier can be used to realize π junctions, which have, in comparison to conventional 0 junctions, a phase drop of π in the ground state. By joining a 0 and π JJ, a 0- π JJ can be created with a novel groundstate: a semifluxon. A semifluxon is a vortex, which is formed spontaneously at the 0- π boundary. It carries the magnetic flux $\Phi = \pm \Phi_0/2$, where Φ_0 is the magnetic flux quantum. We have investigated the phase dynamics of underdamped 0, π and 0- π ferromagnetic Josephson tunnel junctions of intermediate length. The junctions have been fabricated as Nb/Al₂O₃/Ni₆₀Cu₄₀/Nb superconductor-insulator-ferromagnet-superconductor heterostructures. We measured the switching current statistics down to 20 mK and as a function of an applied magnetic field. We analyzed our data in the framework of transition state theory¹ and found good agreement for both, the quantum tunneling and the thermal activation regime, with no indications of additional (spin) noise due to the ferromagnet.

¹Hänggi *et al.*, Rev. Mod. Phys. **62**, 251 (1990).