Anomalous correlation between superconductivity and magnetism in iron pnictide superconductor $LaFeAsO_{1-x}F_x$ near the phase boundary

M. Hiraishi^a, R. Kadono^{a,b}, M. Miyazaki^a, A. Koda^{a,b}, K. M. Kojima^{a,b}, M. Ishikado^c, S. Shamoto^c, and S. Wakimoto^c

^aDepartment of Materials Structure Science, The Graduate University for Advanced Studies (Sokendai) ^bInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS) ^cJapan Atomic Energy Agency (JAEA)

Anomalous correlation between superconductivity and magnetism in LaFeAsO_{1-x}F_x near the boundary between these two phases is demonstrated by muon spin rotation (μ SR) measurement. It is inferred from zero field μ SR that a part of the specimen (x = 0.057) exhibits magnetism below 100 K, where the volume fraction of the magnetic domain reaches 15% at the lowest temperature (~4.5 K). Transverse field μ SR measurements under 0.05 T and 7 T indicate that the signal corresponding to the magnetic domain shows negative frequency shift which is further enhanced below superconducting transition temperature ($T_c \simeq$ 25.5 K). The magnitude of the shift below T_c reaches 0.1~0.15 MHz at lower temperatures irrespective of external field, indicating that the enhancement below T_c is not due to the artifact of magnetic vortices. Moreover, depolarization rate in magnetic domain exhibits increase below T_c . These behaviors are in agreement with our previous observation in a sample of different origin (x = 0.06)[1], suggesting close similarity with CeCu₂Si₂.

[1] S. Takeshita et al., J. Phys. Soc. Jpn. 77, 103703 (2008).