Phase diagram of the $\mathrm{SmFe}_{1-x} \mathrm{Co}_{x} \mathbf{A s O}(0 \leq \mathrm{x} \leq 1)$ system

Y. K., J. Tong, X. Lin, Q. Tao, G. H., and Z. A.

Department of Physics, Zhejiang University, Hangzhou 310027, China
A series of the $\mathrm{SmFe}_{1-x} \mathrm{Co}_{x} \mathrm{AsO}(0 \leq \mathrm{x} \leq 1)$ samples are synthesized and the evolution of electronic state with Co content is investigated.As well known, the parent compound ($\mathrm{x}=0$) undergoes a SDW transition of Fe 3d electrons around 140 K and an antiferromagnetic(AFM) ordering of Sm 4 f electrons at 5.6 K.Even 5% Co doping severely suppresses the SDW transition to a very lower temperature, and meanwhile, superconductivity appears with Tc of 8 K . With increasing Co content, Tc (midpoint in resistivity) reaches a maximum value of 17.2 K at $\mathrm{x}=0.1$, and a narrow superconducting (SC) regime with ($0.05 \leq \mathrm{x} \leq 0.2$) is identified. On the other hand, the AFM order of Sm 4 f electrons is robust in the whole Co doping range, and its Neel temperature TN slightly decreases in the intermediate doping range ($0 \leq \mathrm{x} \leq 0.7$), and then it increases to 5.6 K at $\mathrm{x}=1$. Around $\mathrm{x}=0.7$, there is a transition from paramagnetic to ferromagnetic (FM) order of $\mathrm{Co} / \mathrm{Fe} 3 \mathrm{~d}$ electrons. Furthermore, an antiferromagnetic transition of $\mathrm{Co} / \mathrm{Fe}$ electrons occurs at a lower temperature probably due to the interaction between Co 3 d electrons and Sm 4 f electrons. For the other end compound ($\mathrm{x}=1$), SmCoAsO shows a FM transition around 80 K , and an AFM transition around 45 K , and finally an AFM order of Sm 4 f electrons at 5.6 K . Based on those results, an electronic phase diagram of the $\mathrm{SmFe}_{1-x} \mathrm{Co}_{x} \mathrm{AsO}(0 \leq \mathrm{x} \leq 1)$ systems is established.

