Neutron Diffraction in the Pressure-Induced Superconducting Antiferromagnet ${\bf CeIrSi}_3$

N. Aso^a, M. Takahashi^b, H. Yoshizawa^b, H. Iida^c, N. Kimura^c, and H. Aoki^c

^aFaculty of Science, University of the Ryukyus, Okinawa, Japan

 b Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, Ibaraki, Japan c Graduate School of Science, Tohoku University, Sendai, Japan

Neutron diffraction experiments were performed to investigate a nature of the antiferromagnetic ordered phase of the pressure-induced superconductor CeIrSi₃.¹ We observed magnetic Bragg reflections below $T_{\rm N} = 5.0$ for the first time, using a large single crystal grown by Czochralsky pulling method in a tetra-arc furnace. The magnetic structure is characterized by the incommensurate wave vector $Q = (\pm \delta_1, 0, 0.5 \pm \delta_2)$. The antiferromagnetic ordered state can be interpreted as a spin-density wave formation by taking account of the results on de Haas-van Alphen (dHvA) signals in CeIrSi₃ where the 4*f*-electrons of CeIrSi₃ are itinerant.

In the conference, we disucuss the magnetic structure of $CeIrSi_3$ in connection with the results of the iso-structural compound $CeRhSi_3$.²

¹I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Onuki, J. Phys. Soc. Jpn **75**, 043703 (2006).

²N. Aso, H. Miyano, H. Yoshizawa, N. Kimura, T. Komatsubara, and H. Aoki, J. Mag. Mag. Mat. **310**, 602 (2007).