Magnetic field effect in a topological superconducting junction $Pb/Ru/Sr_2RuO_4$

Taketomo Nakamura^a, T. Sumi^a, S. Yonezawa^a, T. Terashima^b, M. Sigrist^c, and Y. Maeno^a

^aDepartment of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan ^bResearch Center for Low Temperature and Materials Science, Kyoto University, Kyoto, Japan ^cTheoretische Physik, ETH Zürich, Zürich, Switzerland

 Sr_2RuO_4 is a most promising candidate of a spin-triplet superconductor.¹ In addition to its novel spin pairing, a number of experiments and theories suggest the chiral *p*-wave state. Recently, such a state has been attracting great interest as a topological superconducting state.

We study $Pb/Ru/Sr_2RuO_4$ junctions, in which Ru normal metal is surrounded by Sr_2RuO_4 , and find unusual temperature dependence of the critical currents.^{2,3} We attribute the behavior to a topological phase mismatch between the *p*-wave superconductivity and the *s*-wave superconductivity in Ru proximityinduced by Pb. In such junctions, spontaneous magnetic flux is expected at the Ru/Sr₂RuO₄ interface.⁴ To clarify the effect of the spontaneous magnetic flux, we focus on the behavior in small magnetic fields.

¹A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. **75**, 657 (2003).

²R. Nakagawa, T. Nakamura, T. Terashima, S. Yonezawa and Y. Maeno, Physica C 470, S744 (2010).
³T. Nakamura, *et al*, preprint (2011).

⁴H. Kaneyasu and M. Sigrist, J. Phys. Soc. Jpn. **79**, 053706 (2010).