Electronic structures and magnetic orders of iron- pnictides or chalcogenides Zhong-Yi Lu

Department of Physics, Renmin University of China, Beijing 100872, China

The first-principles electronic structure calculations play an important role on study of high Tc superconductor iron- pnictides or chalcogenides. Iron-pnictides were first predicted by the theoretical calculations to be antiferromagnetic semimetals ¹. Based on the calculations, Arsenic-bridged antiferromagnetic superexchange interaction was proposed ². The bi-collinear antiferromagnetic order was then predicted for iron-chalcogenide α -FeTe ³. Recently, the parent compounds of superconductors iron-chalcogenides $K_y Fe_{2-x}Se_2$ with ordered Fe vacancies were further shown to be antiferromagnetic semiconductors ⁴, in which the superconductivity emerges upon electron or hole doping, especially, the superconductivity and antiferromagnetic long-range order coexist. It was then proposed that the superconductivity is driven by mediating coherent spin wave excitations in these materials $K_y Fe_{2-x}Se_2$ ⁵.

¹Phys. Rev. B 78, 033111 (2008)
²Phys. Rev. B 78, 224517 (2008)
³Phys. Rev. Lett. 102, 177003 (2009)
⁴Phys. Rev. Lett. 106, 087005 (2011); arXiv:1102.2215
⁵arXiv:1102.4575

INVITED PAPER