Anisotropic optical spectrum of detwinned $Ba(Fe_{1-x}Co_x)_2As_2$

M. Nakajima^{a, b, c}, S. Ishida^{a, b, c}, K. Kihou^{b, c}, Y. Tomioka^{b, c}, C. H. Lee^{b, c}, A. Iyo^{b, c}, H. Eisaki^{b, c}, T. Kakeshita^{a, c}, T. Ito^{b, c}, and S. Uchida^{a, c}

^aDepartment of Physics, University of Tokyo, Tokyo, Japan ^bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan ^cJST, Transformative Research-Project on Iron Pnictides (TRIP), Tokyo, Japan

An anisotropic electronic state emerging in undoped and underdoped compounds of iron-arsenide superconductors has attracted much interest as the proximate phase to the superconducting phase. To understand the physics of iron-based superconductors, it is important to investigate the electronic properties in this phase. Since free-standing crystals have a twinned structure, which hinders us from observing the genuine anisotropic properties, experiments using detwinned single crystals should be carried out. We performed optical spectroscopy on the mechanically detwinned $Ba(Fe_{1-x}Co_x)_2As_2$ crystals. For the parent compound, in the low-temperature orthorhombic-antiferromagnetic phase, low-energy optical conductivity along the longer *a* axis is larger than that along the shorter *b* axis, and the anisotropy is reversed in the high-energy region.¹ Such anisotropy arises from anisotropic gap opening. We will present how the anisotropic spectrum evolves with Co doping to explain the enhanced anisotropy in the dc resistivity of the Co-doped compounds.

¹M. Nakajima *et al.*, J. Phys. Chem. Solids, doi:10.1016/j.jpcs.2010.10.049 (to be published).