High-pressure studies for hydrogen substituted CaFeAsF $_{1-x}$ H $_x$

K. Ookuma^a, M. Ebata^a, T. Tomita^{a, b}, H. Takahashi^{a, b}, T. Hanna^c, Y. Muraba^c, S. Matsuishi^c, and H. Hosono^{c, d}

^aCollege of Humanities and Sciences, Nihon University, Tokyo, Japan ^bTRIP, Japan Science and Technology(JST), Tokyo, Japan

^cMaterials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan

^dFrontier Research Center, Tokyo Institute of Technology, Yokohama, Japan

High-pressure electrical resistivity measurements have been carried out for $CaFeAs_{1-x}H_x$, which has been successfully synthesized very recently¹. Hydrogen atoms are incorporated as H^- ions at the F^- sites. In case of CaFeAsF superconductivity appears with Cosubstitution into Fe, which is considered to be an electron doping. In $CaFeAs_{1-x}H_x$, superconductivity does not appear with H substitution, because the isovalent substitution does not affect largely the electronic state. On the other hand, pressure-induced superconductivity appears at 28 K at 5 GPa^2 for CaFeAsF. In this study superconducting properties for H substituted materials were investigated from the high-pressure electrical resistivity measurements. For CaFeAsH the pressure-induced superconductivity was confirmed at 28 K at 3 GPa, which is a little smaller than the case of CaFeAsF. High-pressure x-ray diffraction is now in progress to decide the crystal structure under high pressure.

¹T. Hanna et al., arXiv:1103.1177. ² H. Okada et al., Phys.Rev. B81, (2010) 054507.