Evidence for Dirac-like excitations in $SrFe_2As_2$ from Quantum Oscillation Experiments

M. Sutherland^a, D. Hills^a, B. Tan^a, M. Altarawneh^b, N. Harrison^b, J. Gillett^a, E. O'Farrell^{a, c}, S. Goh^a, T. Bensemann^a, I. Kokanovic^{d, a}, P. Syers^a, J.R. Cooper^a, and S.E. Sebastian^a

^aCavendish Laboratory, University of Cambridge, UK

^bLos Alamos National Laboratory, Los Alamos, New Mexico, USA

^cInstitute for Solid State Physics, University of Tokyo, Kashiwa, Japan

^dUniversity of Zagreb, Faculty of Sciences, Department of Physics, Zagreb, Croatia

The antiferromagnetic parent compounds of the high T_c pnictide superconductors play host to unusual magnetic and electronic properties which may be closely related to the presence of superconductivity in the doped compounds. Recent theoretical¹ and experimental² work have suggested the presence of small Fermi-surface pockets in these compounds with regions in k-space characterized by a Dirac-like dispersion. Here we test this scenario by performing quantum oscillation studies on high quality single crystal samples of SrFe₂As₂ to 60 T in pulsed magnetic fields. By tracking the ratio of the quasiparticle effective mass m^{*} to the quantum oscillation frequency as a function of magnetic field angle, we observe a dependence consistent with that expected for the Dirac dispersion scenario. We discuss the implications of this result on understanding the metallic state of the FeAs parent compounds.

¹N. Harrison and SE Sebastian, Phys. Rev. B. **80**, 224512 (2009).

²P. Richard P, K. Nakayama, T. Sato *et. al.*, Phys. Rev. Lett. **104**, 137001 (2010).