A Superconducting Spin Valve Core Structure based on the FFLO Like State: Studies on Bilayers and Trilayers of Superconductors and Ferromagnets

V.I. Zdravkov^{a, b}, J. Kehrle^a, G. Obermeier^a, C. Müller^a, R. Morari^{a, b}, A.S. Sidorenko^a, S. Horn^a, R. Tidecks^a, and L.R. Tagirov^{a, c}

^aInstitut für Physik, Universität Augsburg, D-86159 Augsburg, Germany
^bInstitute of Electronic Engineering and Nanotechnologies ASM, MD 2028 Kishiniev, Moldova
^cSolid State Physics Department, Kazan Federal University, 420008 Kazan, Russia

Interference effects of the superconducting pairing wave function in thin film bilayers of Nb as a superconductor (S) and $Cu_{41}Ni_{59}$ as ferromagnetic (F) material lead to critical temperature oscillations and reentrant superconductivity for increasing F-layer thickness. The phenomenon is generated by the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state establishing in these geometries. So far detailed investigations were performed on S/F bilayers.¹ Recently, we could also realize the phenomena in F/S bilayers where the S-metal now is grown on top of the F-material. Combining both building blocks yields an F/S/F trilayer, representing the core structure of the superconducting spin valve.² Also for this geometry we observed deep critical temperature oscillations and reentrant superconductivity, which is the basis to obtain a large spin switching effect, *i.e.* a large shift in the critical temperature, if the relative orientation of the magnetizations of the F-layers is changed from parallel to antiparallel.

V. I. Zdravkov, J. Kehrle, G. Obermeier, et al., Phys. Rev. B 82, 054517 (2010).
L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).