ARPES Evidence of Decoupling of Graphene Film from Ruthenium Substrate by Interface Si-Intercalation (LT26)

Junfeng He^a, Li Huang^b, Lin Zhao^a, Yi Pan^b, Wentao Zhang^a, Haiyun Liu^a, Xiaowen Jia^a, Daixiang Mou^a, Shanyu Liu^a, Zhaoyu Chen^a, Yingying Peng^a, Guodong Liu^a, Xiaoli Dong^a, Shaolong He^a, Li Yu^a, Zuyan Xu^c, Chuangtian Chen^c, Hongjun Gao^b, and X.J. Zhou^a

^aNational Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ^bInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, China ^cTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China

Thermally annealing ruthenium single crystals is a most effective method to fabricate large-scale graphene, but the strong coupling between graphene film and ruthenium substrate makes further research much more complicated. High-resolution angle-resolved photoemission spectroscopy revealed that intercalation of Si on Ru(0001) can lead a decoupling of graphene film from Ru substrate, as demonstrated by the clear and linear bands near the Dirac point.