Interplay between spin-singlet and spin-triplet ordering in SFF spin valves

T.Yu. Karminskaya^a, A.A. Golubov^b, M.Yu. Kupriyanov^a, and S. Prischepa^c

^a Institute of Nuclear Physics, Moscow State University, Russia

^bFaculty of Science and Technology, University of Twente, Enschede, The Netherlands

^cBelarus State University of Informatics and Radioelectronics, Minsk, Belarus

Recently, structures where two F-layers are coupled to a superconductor (FSF or SFF) attracted much attention since they may serve as superconducting spin valves, where transition temperature is controlled by angle α between F-layer magnetization directions. In this work we address the issue of interplay between spin-singlet and spin-triplet superconducting correlations in SFF structures. We show that that the magnetization-induced phase slips at both interfaces lead to a number of new phenomena. First, for parallel orientations of magnetizations in the F-layers, π -state in SFFIS Josephson junction can be realized as a result of two subsequent $\pi/2$ phase shifts at the interfaces. Second, the magnitude of long-range spin-triplet order parameter component generated in SFF structures with varying angle α , has anomalous dependence on α . Namely, contrary to the standard knowledge based on the analysis of symmetric FSF or SFFS structures, the triplet component in SFF structures does not reach a maximum in the vicinity of $\alpha = \pi/2$ but it vanishes for this configuration of magnetization vectors. We also discuss how these new effects manifest itself in the conductance of F layers and in the realization of $0 - \pi$ transition in SFFIS tunnel junctions.