Comparative studies of the field-dependent scanning tunneling spectroscopy in cuprate and iron-pnictide superconductors

N.-C. Yeh^a, M. L. Teague^a, A. D. Beyer^a, P. Chen^b, B. Shen^b, and H.-H. Wen^b

^aDepartment of Physics, California Institute of Technology, Pasadena, CA, USA ^bInstitute of Physics, Chinese Academy of Sciences, Beijing & Nanjing University, China

We study the scanning tunneling spectroscopy of hole-type cuprate YBa₂Cu₃O_{7- δ} (Y-123, $T_c = 93$ K), electron-type cuprate Sr_{0.9}La_{0.1}CuO₂ (La-112, $T_c = 43$ K), and "122" iron pnictides Ba(Fe_{1-x}Co_x)₂As₂ (x = 0.06, 0.08, 0.12 for $T_c = 14, 24, 20$ K). In zero field (H=0), spatially homogeneous coherence peaks at energies $\omega = \pm \Delta_{SC} \sim \pm 21$ meV flanked by spectral "shoulders" at $\pm \Delta_{eff} \sim \pm 38$ meV are found in Y-123. In contrast, only a pair of spatially homogeneous peaks are seen in La-112 at $\pm \Delta_{eff} \sim \pm 13$ meV. For H > 0, vortices with a radius much larger than the coherence length ξ_{SC} is found in Y-123, whereas the vortex radius is comparable to ξ_{SC} in La-112. Moreover, pseudogap (Δ_{PG}) features are revealed inside the vortices, with $\Delta_{PG} = \sqrt{\Delta_{eff}^2 - \Delta_{SC}^2} > \Delta_{SC}$ in Y-123 and $\Delta_{PG} < \Delta_{SC}$ in La-112. The Fourier transformation (FT) of the Y-123 spectra exhibits spectral peaks due to ω -dependent quasiparticle interference (QPI) wave-vectors and ω -independent wave-vectors associated with competing orders.¹ In 122 iron pnictides, two-gap superconductivity is evident in the H = 0 spectra for all doping. The FT spectra for $H \ge 0$ exhibit ω and x-dependent QPI consistent with sign-changing s-wave pairing.²

¹N.-C. Yeh and A. D. Beyer, Int. J. Mod. Phys. B **23**, 4543 (2009). ²M. L. Teague et al, Phys. Rev. Lett. **106**, 087004 (2011).