Vortex Lattice Studies in $CeCoIn_5$ with $H \perp c$

M.R. Eskildsen^a, P. Das^a, A.T. Holmes^b, E.M. Forgan^b, A.D. Bianchi^c, J.S. White^d, S. Gerber^d, M. Kenzelmann^d, J.L. Gavilano^d, M. Zolliker^d, C. Wang^e, E.D. Bauer^e, J.L. Sarrao^e, and C. Petrovic^f

^aDepartment of Physics, University of Notre Dame, USA

^bSchool of Physics and Astronomy, University of Birmingham, UK

 $^c\mathrm{D}\acute{\mathrm{e}}\mathrm{partement}$ de Physique, Université de Montréal, Canada

^dLNS and LDM, Paul Scherrer Institute, Switzerland

^eLos Alamos National Laboratory, USA

^fBrookhaven National Laboratory, USA

We report on small-angle neutron scattering measurements on the vortex lattice (VL) in the mixed state of CeCoIn₅ with the magnetic field (*H*) along [100] and [110]. For both field orientations a distorted hexagonal VL is observed, reflecting the penetration depth anisotropy of the screening current plane. With $H \parallel [100]$ the VL is oriented with Bragg reflections along the [001]-axis at all fields. For $H \parallel [110]$ the same VL orientation is observed at low fields, followed by a 90° first-order reorientation transition as *H* is increased. For $H \parallel [100]$ we obtain the field dependence of the form factor ($|F|^2$) both within (50 mK) and outside (350 mK) the magnetic *Q*-phase. At both temperatures $|F|^2$ varies with *H* in a manner similar to $H \parallel [001]$ [J.S. White *et al.*, New J. Phys. **12**, 023026 (2010)], due to a paramagnetic alignment of the unpaired elctron spins in the vortex cores. Inside the *Q*-phase we observe an increased disordering of the field cooled VL indicating a subtle coupling to the magnetic phase.