Ultrafast dynamics in the $\text{FeSe}_{1-x}\text{Te}_x$ single crystals studied by femtosecond time-resolved spectroscopy

C. W. Luo^a, I. H. Wu^a, T. W. Huang^b, K. W. Yeh^b, J.-Y. Lin^c, K. H. Wu^a, J. Y. Juang^a, T. M. Uen^a, and M. K. Wu^b

^aDepartment of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan ^bInstitute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan ^cInstitute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

We used femtosecond time-resolved spectroscopy to investigate the quasiparticle relaxation in FeSe_{1-x}Te_x single crystals. The present experiments were performed by using standard pump-probe technique with 100 fs pump pulses at 400 nm and probe pulses at 800 nm. The amplitude of the photoinduced reflectivity changes ($\Delta R/R$) is strongly temperature-dependent. The abnormal change of the amplitude of $\Delta R/R$ at normal state is associated with the structure transition from tetragonal to orthorhombic in FeSe_{1-x}Te_x single crystals. From the measured relaxation time of photoexcited quasiparticles, moreover, the electron-boson coupling strength in FeSe_{1-x}Te_x superconductors could be further estimated by the standard scattering rate formulas.