Coexistence of Superconductivity and Magnetism in $K_{0.8}Fe_2Se_{1.4}S_{0.4}$

L. Li^a, Z. R. Yang^b, Z. T. Zhang^a, W. Tong^a, C. J. Zhang^a, S. Tan^a, and Y. H. Zhang^a

^aHigh Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230026, People's Republic of China

^bKey Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

High-quality single crystals of $K_{0.8}Fe_2Se_{1.4}S_{0.4}$ are successfully synthesized by self-flux method with the superconducting transition temperatures $T_c^{onset} = 32.8$ K and $T_c^{zero} = 31.2$ K. In contrast to external pressure effect on superconductivity, the substitution of S for Se does not suppress T_c , which suggests that chemical doping may mainly modulate the anion height from Fe-layer rather than compressing interlayer distance. The investigation of electron spin resonance shows clear evidence for strong spin fluctuation at temperatures above T_c . Accompanied by the superconducting feature spectra, a novel resonance signal develops gradually upon cooling below T_c , indicating the coexistence of superconductivity and magnetism in $K_{0.8}Fe_2Se_{1.4}S_{0.4}$ crystal.