Pressure-induced superconductivity in $Bi_{1-x}Sb_x$ alloy

A. Ohmura^a, A. Yamamura^b, M. Einaga^b, F. Ishikawa^b, A. Nakayama^a, Yuh Yamada^c, and S. Nakano^c

 a Center for Transdisciplinary Research, Niigata University, Niigata, Japan

^bGraduate School of Science and Technology, Niigata University, Niigata, Japan

^cFaculty of Science, Niigata University, Niigata, Japan

^dAdvanced Nano Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan

Bismuth-antimony alloy ($\text{Bi}_{1-x}\text{Sb}_x$) is a substitutional solid solution over the full concentration range, and crystallizes in the A7-structure with space group $R\bar{3}m$ at ambient condition. In this study, we performed the electrical resistivity and x-ray diffraction measurements of $\text{Bi}_{1-x}\text{Sb}_x$ under hydrostatic pressure up to 10 GPa. Pressure-induced superconducting transitions were observed at all concentrations measured. The transition temperatures (T_c) are $T_c \sim 7$ K at around 3-4 GPa for x = 0.15, 0.4, 0.6 and $T_c = 4.6$ K at 8 GPa for x = 0.8, which are consistent with the results by Il'ina. The effect of pressure on the superconductivity changes at $x \sim 0.7$, namely negative for $x \leq 0.6$ and positive for x = 0.8. On the other hand, applying pressure causes the structural change from the A7-structure to an incommensurate host-guest composite one. Our structural studies for x = 0.15, 0.4, 0.6 at ambient temperature show that the high-pressure phase starts to be formed at $P \sim 3.5-4.5$ GPa. Thus, we infer that the superconducting transition in $\text{Bi}_{1-x}\text{Sb}_x$ occurs in the incommensurate host-guest composite structure.

¹M. A. Il'ina, Sov. Phys. Solid State **18**, 600 (1976) & **22**, 494 (1980).

²U. Häussermann, O. Degtyareva, et al., Phys. Rev. B **69**, 134203 (2004).