Cyclotron Resonance in KFe_2As_2

M. Kimata^a, T. Terashima^b, N. Kurita^b, H. Satsukawa^b, A. Harada^b, K. Kodama^b, K. Takehana^b, Y. Imanaka^b, T. Takamasu^b, A. Sato^b, M. Imai^b, K. Kiho^c, C-H. Lee^c, H. Kito^c, H. Eisaki^c, A. Iyo^c, H. Fukazawa^d, Y. Kohori^d, H. Harima^e, and S. Uji^b

^aInstitute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Chiba, Japan ^bNational Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan ^cNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan ^dDepartment of Physics, Chiba University, Chiba, Japan

^eDepartment of Physics, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan

We report the results of cyclotron resonance (CR) experiments in an iron-based superconductor KFe₂As₂. The CR measurement is a powerful probe to obtain the effective masses directly. In contrast to the quantum oscillations (QOs), it has been believed that the CR effective mass (m_{CR}^*) is unrenormalized by the electron-electron (e-e) interaction[1]. Hence, one can discuss the contribution of e-e interaction in the mass enhancement by comparison between m_{CR}^* and QO effective masses. In our experiment, a series of CR signal with an effective mass of $(3.4\pm0.05)m_e$ is observed (m_e is the free electron mass). This CR is attributed to the α FS observed in the recent de-Haas van Alphen (dHvA) measurement. Our main result is that the m_{CR}^* is significantly smaller than the m_{dHvA}^* , providing the direct evidence of the strong mass enhancement by the e-e interaction. ¹

¹W. Kohn, Phys. Rev. **123**, 1242 (1961). K. Kanki, and K. Yamada, J. Phys. Soc. Jpn. **66**, 1103 (1997).