Control of the electronic state of Ca_2RuO_4 by uniaxial pressure

Ryo Ishikawa^a, H. Taniguchi^a, S. K. Goh^b, S. Yonezawa^a, F. Nakamura^c, and Y. Maeno^a

^aDepartment of Physics, Graduate School of Science, Kyoto University, Japan ^bCavendish Laboratory, University of Cambridge, UK ^cADSM, Hiroshima University, Japan

 Ca_2RuO_4 under hydrostatic pressure exhibits a variety of electronic states¹ : the antiferromagnetic insulating phase, the ferromagnetic metallic phase, and even the superconducting phase² . Importantly, the phase transitions are accompanied by crystal distortions; in particular, the RuO₆ octahedra in the crystal are elongated along the *c* axis in the metallic state while they are flattened in the insulating state³. Hence, the crystal structure is a crucial parameter to determine the electronic state in this system. Anticipating that uniaxial pressure along the *ab* plane elongates the RuO₆ octahedra of Ca₂RuO₄ more effectively than hydrostatic pressure, we measured the resistance of Ca₂RuO₄ under in-plane uniaxial pressures by a quasi-four-terminal method and indeed succeeded in inducing a metallic phase. We report on the low-temperature properties of this induced metallic phase.

¹F. Nakamura *et al.*, Phys. Rev. B **65**, 220402(R) (2002).

²P. Alireza *et al.*, J. Phys.: Condens. Matter **22**, 052202 (2010).

³P. Steffens *et al.*, Phys. Rev. B **72**, 094104 (2005).