Antiferromagnetic order and high temperature superconductivity in underdoped Hg-based Five-layered Cuprates

S. -i. Tabata^a, S. Shimizu^a, **H. Mukuda**^a, Y. Kitaoka^a, P. M. Shirage^b, and A. Iyo^b

^aGraduate School of Engineering Science, Osaka University, Osaka, Japan ^bNational Institute of Advanced Industrial Science and Technology, Ibaraki, Japan

We report Cu-NMR study on underdoped Hg-based five-layered cuprates HgBa₂Ca₄Cu₅O_{12+ δ} with T_c =72, 82 and 92 K. From the Knight shift measurements, hole densities at inner planes (IPs) were estimated as 0.053~0.073 on the basis of the relation of Knight shift and hole density ¹. Zero field NMR measurements reveal that the antiferromagnetic (AFM) moments at IPs are in the range of 0.1~0.18 $\mu_{\rm B}$ at T=1.5 K for these compounds, which is smaller than 0.5~0.7 $\mu_{\rm B}$ for undoped Mott insulators. The mobile holes existing at IP uniformly reduce their AFM moments, indicating that a static AFM metallic state is realized at underdoped IPs. We also present a phase diagram of CuO₂ plane based on Hg-based five-layered cuprates, which has been revised after the previous reports², ³. It includes the experimental findings such as the existence of AFM metallic state in doped Mott insulators, the uniformly mixed phase of AFM and high- T_c superconductivity, and the emergence of *d*-wave superconductivity with a maximum of T_c just outside a critical carrier density, at which the AFM moment disappears.

¹S. Shimizu *et al.*, Phys. Rev. B (2011) *in press* (arXiv:1103.3407).

²H. Mukuda *et al.*, Phys. Rev. Lett **96** (2006) 087001.

³H. Mukuda *et al.*, J. Phys. Soc. Jpn. **77** (2008) 124706.