Localized and itinerant dichotomy of electrons in Iron pnictides

L. Jiao^a, J.L. Zhang^a, T. Shang^a, F.F. Balakirev^b, J. Singleton^b, C. Setty^c, J.P. Hu^c, L.J. Li^a, G.H. Cao^a, Z.A. Xu^a, H.H. Wen^d, X.H. Chen^e, and H.Q. Yuan^a

^aDepartment of Physics, Zhejiang University, Hangzhou, Zhejiang, China

^bNHMFL, Los Alamos National Laboratory, MS E536, Los Alamos, NM, USA

^cDepartment of Physics, Purdue University, West Lafayette, IN, USA

^dInstitute of Physics of Physics, Chinese Academy of Sciences, Beijing, China

^eDepartment of Physics, University of Science and Technology of China, Hefei, Anhui, China

We systematically studied the transport properties of single crystals $Ba(Fe_{1-x}Co_x)_2As_2^{-1}$, LaFeAsO and NaFeAs in a pulsed magnetic field up to 60T. Common features were revealed in their magnetoresistance and Hall resistance. Above the structural transition temperature T_S , the magnetoresistance is negligible and the Hall resistivity follows regular linear field dependence. Upon cooling down below T_c , huge magnetoresistance develops and the Hall resistance deviates from the conventional linear field dependence. These findings indicate a dramatic change of the electronic structure at T_S . Remarkably, we found that the magnetic transition in these samples is extremely robust against magnetic field up to 60T, providing evidence of local-moment magnetism in iron pnictides. We argue that the 3d-electrons of Fe in the iron based superconductors bear a dual nature and the magnetic/structural transitions are driven by magnetic interactions.

¹H.Q.Yuan et.al., arXiv:1102.5476