NMR study of the interplay between magnetic order and superconductivity in $YBa_2Cu_3O_{6.45}$

T. Wu^a, M-.H. Julien^a, H. Mayaffre^a, S. Krämer^a, M. Horvatić^a, C. Berthier^a, C.T. Lin^b, V. Hinkov^b, D. Haug^b, T. Loew^b, and B. Keimer^b

 a Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 38042 Grenoble, France

^bMax-Planck-Institut für Festkorperförschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Cu NMR measurements were performed up to 28.5 Tesla in an untwined YBa₂Cu₃O_{6.45} single crystal for which an electronic liquid crystal state was recently reported¹. Although the sample is superconducting at $T_C = 35$ K, field-dependent magnetic order is found at low temperatures, in agreement with previous works². Comparison of the results with data from other probes in YBa₂Cu₃O_{6.45} and with NMR data in underdoped LSCO and YBCO reveals important aspects of the interplay between magnetic order and high temperature superconductivity.

¹V. Hinkov et al., Science **319**, 597(2008).

²D. Haug et al., Phys. Rev. Lett. **103**, 017001(2009).