Ultrasonic Investigations on Layerd Iron Pnictide Superconductor Ba(Fe_{0.9}Co_{0.1})₂As₂

T. Goto^{*a*}, R. Kurihara^{*a*}, K. Araki^{*a*}, K. Mitsumoto^{*a*}, M. Akatsu^{*a*}, Y. Nemoto^{*a*}, S. Tatematsu^{*b*}, and M. Sato^{*c*}

^aGraduate School of Science and Technology, Niigata University, Niigata, Japan ^bDepartment of Physics, Nagoya University, Nagoya, Japan ^cToyota Physical and Chemical Research Institute, Nagakute, Aichi, Japan

We have carried out ultrasonic pulse echo measurements on single crystals of iron pnicitde

Ba(Fe_{0.9}Co_{0.1})₂As₂ with optimal superconducting transition temperature of $T_{\rm SC} = 23$ K. The shear elastic constant C_{66} associated with elastic strain ε_{xy} reveals considerable softening of 28 % below 300 K down to $T_{\rm SC}$ and turns to increasing in superconducting phase below $T_{\rm SC}$, while other shear elastic constants of $(C_{11} - C_{12})/2$ and C_{44} and longitudinal ones of C_{11} and C_{33} show no sigh of softening. The softening of C_{66} is well described by $C_{66} = C_{66}^0(1 - \Delta/(T - \Theta))$ with $\Theta = -47.5$ K and $\Delta = 20$ K. The negative Weiss temperature Θ indicates antiferro-quadrupole interaction in the system. The softening in C_{66} is robust in applied magnetic fields. The present ultrasonic experiments indicate that the quadrupole associated with degenerate $d_{y'z}$ and $d_{zx'}$ bands participates in the superconductivity of the present iron pnicitde system. The plausible superconductivity symmetry s_{++} in the iron pnicitde will be argued.