Evidence for long-lived quasiparticles trapped in superconducting point contacts

M. Zgirski^{*a*, *b*}, L. Bretheau^{*a*}, Q. Le Masne^{*a*}, H. Pothier^{*a*}, D. Esteve^{*a*}, and C. Urbina^{*a*}

^aQuantronics Group, CNRS, IRAMIS, CEA-Saclay, 91191 Gif-sur-Yvette, France ^bcurrently: Institute of Physics, Polish Academy of Sciences, Warszawa, 02-668, Poland

We use micro-fabricated mechanically controllable break junctions to obtain aluminum point contacts. The current-voltage characteristic of the contact allows to determine precisely the transmissions of its conduction channels, and its current-phase relation.¹²We have observed that the supercurrent across phase-biased, highly transmitting contacts is strongly reduced within a broad phase interval around π . We attribute this effect to quasiparticle trapping in one of the discrete sub-gap Andreev bound states formed at the contact.³ Trapping occurs essentially when the Andreev energy is smaller than half the superconducting gap Δ , a situation in which the lifetime of trapped quasiparticles is found to exceed 100 μ s. The origin of this sharp energy threshold is presently not understood.

¹E. Scheer et al., Phys. Rev. Lett. 78, 3535 (1997)

²M. L. Della Rocca et al., Phys. Rev. Lett. 99, 127005 (2007)

³N. M. Chtchelkatchev and Yu.V. Nazarov, Phys. Rev.Lett. 90, 226806 (2003).