Evidence for long-lived quasiparticles trapped in superconducting point contacts

M. Zgirski, L. Bretheau, Q. Le Masne, H. Pothier, D. Esteve, and C. Urbina

Quantronics Group, CNRS, IRAMIS, CEA-Saclay, 91191 Gif-sur-Yvette, France
Currently: Institute of Physics, Polish Academy of Sciences, Warszawa, 02-668, Poland

We use micro-fabricated mechanically controllable break junctions to obtain aluminum point contacts. The current-voltage characteristic of the contact allows to determine precisely the transmissions of its conduction channels, and its current-phase relation. We have observed that the supercurrent across phase-biased, highly transmitting contacts is strongly reduced within a broad phase interval around π. We attribute this effect to quasiparticle trapping in one of the discrete sub-gap Andreev bound states formed at the contact. Trapping occurs essentially when the Andreev energy is smaller than half the superconducting gap ∆, a situation in which the lifetime of trapped quasiparticles is found to exceed 100μs. The origin of this sharp energy threshold is presently not understood.