Antiferromagnetic spin fluctuations and s_{\pm} -wave Superconductivity in $(Ca_4Al_2O_{6-y})(Fe_2As_2)$ probed by ⁷⁵As NQR

H. Kinouchi^{*a*}, H. Mukuda^{*a*}, M. Yashima^{*a*}, Y. Kitaoka^{*a*}, P. M. Shirage^{*b*}, H. Kito^{*b*}, H. Eisaki^{*b*}, and A. Iyo^{*b*}

^aGraduate School of Engineering Science, Osaka University, Osaka, Japan

^bNational Institute of Advanced Industrial Science and Technology, Ibaraki, Japan

We report ⁷⁵As-nuclear quadrupole resonance (NQR) study on $(Ca_4Al_2O_{6-y})(Fe_2As_2)$ with $T_c = 27$ K, which is characterized by structural parameters such as short a-axis length, high pnictgen height, narrow As-Fe-As angle, and thick perovskite-type blocking layer¹. A measurement of nuclear spin relaxation rate $1/T_1$ revealed a significant evolution of antiferromagnetic (AFM) spin fluctuations in normal state, which originates from the possible well nested hole and electron Fermi surfaces. Below T_c , the $1/T_1$ decreases steeply upon cooling without any trace of Hebel-Slichter peak, which is consistently accounted for within the framework of s_{\pm} -wave multiple gap model as well as in other Fe-pnictide superconductors². Even though AFM spin fluctuations are more significant than in optimally-doped LaFeAsO_{1-y}($T_c=28$ K), T_c is comparable between these compounds, suggesting that the AFM spin fluctuations are not an unique factor to enhance T_c among the Fe-pnictide superconductors.

¹P. M. Shirage *etal.*, Appl. Phys. Lett. **97**, 172506(2010).
²M. Yashima *etal.*, J. Phys. Soc. Jpn. **78**, 103702(2009)