Three-dimensional Fermi surfaces and their nesting properties in the iron pnictide superconductor $BaFe_2(As_{1-x}P_x)_2$

T. Yoshida^{a, b}, S. Ideta^a, I. Nishi^a, A. Fujimori^{a, b}, T. Shimojima^a, W. Malaeb^c, S. Shin^{b, c}, Y. Nakashima^d, H. Anzai^d, A. Ino^{b, d}, M. Arita^d, H. Namatame^d, M. Taniguchi^d, M. Kubota^e, K. Ono^e, S. Kasahara^f, T. Shibauchi^f, T. Terashima^f, Y. Matsuda^f, M. Nakajima^a, S. Uchida^{b, a}, Y. Tomioka^{b,g}, T. Ito^{b, g}, K. Kihou^{b,g}, C. H. Lee^{b,g}, A. Iyo^{b,g}, H. Eisaki^{b, g}, H. Ikeda^{b, f}, and R. Arita^{b, a}

^aUniv. of Tokyo, ^bJST-TRIP, ^cISSP, ^dHiroshima Univ., ^eKEK-PF, ^fKyoto Univ., ^gAIST

Most of experimental studies on the iron-pnictide superconductors have so far indicated that the superconducting gap opens on the entire Fermi surfaces. However, the isovalent-substituted system $BaFe_2(As_{1-x}P_x)_2$ shows signatures of superconducting gap with line nodes¹, which would give critical information to clarify the pairing mechanism. According to the theory of spin-fluctuation-mediated pairing mechanism, threedimensional nodes in the superconducting gap may appear in the strongly warped hole Fermi surface². Therefore, it is crucial to reveal the three-dimensional electronic structure of the this system for understanding the superconductivity. By angle-resolved photoemission spectroscopy, we find that one of the hole Fermi surfaces has a highly three-dimensional shape and shows poor nesting with the electron Fermi surfaces at the optimal composition. This hole Fermi surface becomes disconnected along k_z direction for large x, which may lead to the suppression of the superconductivity.

¹K. Hashimoto *et al.*, Phys. Rev. B **81**, 220501 (2010).

²K. Suzuki, H. Usui, and K. Kuroki, J Phys. Soc. Jpn. **80**, 013710 (2011).