Upper Critical Field, Second Magnetization Peak and Irreversibility Line in $BaFe_2(As_{1-x}P_x)_2$ Single Crystals

Max Planck Institute for Solid State Research, Heisenbergstra
 β e 1, D-70569 Stuttgart, Germany

Y. Liu C. T. Lin

The upper critical field H_{c2} of optimal $(x=0.31,\ T_c\sim29\ {\rm K})$ and slightly overdoped $(x=0.38,\ T_c\sim26\ {\rm K})$ BaFe₂(As_{1-x}P_x)₂ single crystals were extracted from the temperature dependences of in-plane resistivity ρ_{ab} and magnetization with varying magnetic fields under both $H\parallel c$ and $H\perp c$ configurations. A nearly linear temperature dependence of H_{c2} is observed, and the anisotropic ratio defined as $\gamma = H_{c_2}^{\perp c}/H_{c_2}^{\parallel c}$ turns out to be ~ 2.3 . In the case of $H\parallel c$, the second magnetization peak H_{sp} is observed in the magnetic hysteresis loops (MHLs). The irreversibility line $H_{irr}(T)$ was determined by measuring temperature dependence of magnetization at different magnetic fields and MHLs at different temperatures. The vortex phase diagram of BaFe₂(As_{1-x}P_x)₂ single crystals was subsequently established. The H_{c2} , H_{sp} and $H_{irr}(T)$ of BaFe₂(As_{1-x}P_x)₂ single crystals were analysed by comparing with those observed in optimal doped Ba_{1-x}K_xFe₂As₂ and BaFe_{2-x}Co_xAs₂ single crystals. The origin of the second magnetization peak and mechanism of vortex pinning in BaFe₂(As_{1-x}P_x)₂ single crystals are further discussed.