An energy scale directly related to superconductivity in the high- T_c cuprate superconductors: Universality from the Fermi arc picture

S. Ideta^a, T. Yoshida^a, **A. Fujimori**^a, H. Anzai^b, T. Fujita^b, A. Ino^b, M. Arita^c, H. Namatame^c, M. Taniguchi^{b,c}, Z.-X. Shen^d, K. Takashima^a, K. Kojima^a, and S. Uchida^a

^aDepartment of Physics, University of Tokyo, Bunkyo-ku, Tokyo, Japan

^bGraduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan

^cHiroshima Synchrotron Center, Hiroshima University, Higashi-Hiroshima, Japan

^dDepartment of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA

In the normal state of cuprate high-temperature superconductors (HTSCs), a pseudogap exists on part of the Fermi surface (FS) away from the *d*-wave superconducting (SC) gap node, and the FS is truncated into gapless regions called "Fermi arcs". We have performed a temperature dependent angle-resolved photoemission spectroscopy (ARPES) study of the tri-layer HTSC Bi₂Sr₂Ca₂Cu₃O_{10+ δ} (Bi2223), and have shown that the "effective"SC gap Δ_{sc} defined at the end point of the Fermi arc and the T_c (= 110 K) approximately satisfies the weak-coupling BCS-relationship $2\Delta_{sc} = 4.3k_{\rm B}T_c$. Combining this result with previous ARPES results on single- and double-layer cuprates, we show that the relationship between $2\Delta_{sc} = 4.3k_{\rm B}T_c$ holds for various HTSCs. Furthermore, at $T \sim T_c$, the quasi-patricle width at the end point of the Fermi arc is found to coincide with Δ_{sc} , consistent with the context of Planckian dissipation.