Detection of novel electronic order above the structural transition in underdoped $Ba(Fe_{1-x}Co_x)_2As_2$ and $Fe_{1-y}Te$ with point contact spectroscopy L. H. Greene¹, H. Z. Arham¹, C. R. Hunt¹, W. K. Park¹, J. Gillett², S. Sebastian² Z. J. Xu³, J. S. Wen³, Z. W. Lin³, Q. Li³ and G. Gu³, Point contact spectroscopy reveals a novel ordered region above the magnetic and structural transition temperatures for underdoped $Ba(Fe_{1-x}Co_x)_2As_2$ and $Fe_{1-y}Te$. The conductance measured across ballistic nanoscale Au junctions reveals a conductance enhancement starting as high as T = 177 K for the parent pnictide and with decreasing temperature grows reminiscent of a gap opening. The energy scale and temperature dependence of the spectra are consistent with the orbital ordering as detected by ARPES. [2] Similar results are observed in the chalcogenides. We construct a modified phase diagram for the Co:Ba122 showing a new ordered region existing above the structural and antiferromagnetic transitions. - [1] H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. Sebastian Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li and G. Gu, L. H. Greene (in preparation) - [2] Yi et al. arXiv:1011.0050v1 - [3] The work at UIUC is supported by NSF-DMR-0706013 and by U.S. DOE Award No. DE-AC02-98CH10886. The work at BNL is carried out under U.S. DOE Award No. DE-AC0298CH10886. University of Cambridge is supported by EPSRC, Trinity College, the Royal Society and the Commonwealth Trust. ¹ University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ² Cavendish Laboratory, J. J. Thomson Ave, University of Cambridge, UK ³ Brookhaven National Laboratory, Upton, New York, 11973, USA