Pressure-induced novel superconductivity and heavy electron state in rare earth compounds

F. Honda^a, Y. Hirose^a, S. Yoshiuchi^a, S. Yasui^a, T. Takeuchi^b, I. Bonalde^c, K. Shimizu^d, R. Settai^a, and Y. Ōnuki^a

^aGraduate School of Science, Osaka University, Osaka, Japan ^bLow Temperature Center, Osaka University, Osaka, Japan ^cCentro de Fisica, IVIC, Caracas 1020-A, Venezuela ^dKyokugen, Osaka University, Osaka, Japan

In rare-earth compounds, various kinds of electronic ground states such as magnetic ordering, heavy fermion, and unconventional superconductivity are realized as a result of the competition between the RKKY interaction and the Kondo effect. We have carried out the electrical resistivity measurements under high pressures on CePd₅Al₂, CeIrGe₃ and YbT₂Zn₂₀ (T: Co, Rh, Ir) in order to investigate quantum criticality and superconductivity. An antiferromagnet CePd₅Al₂ with a Néel temperature $T_{N1}=4.1$ K, which is an isostructural family of a heavy fermion superconductor NpPd₅Al₂, shows superconductivity around the critical pressure $P_c \simeq 10$ GPa. CeIrGe₃ with $T_{N1}=8.7$ K, which crystallizes in the BaNiSn₃type tetragonal structure without inversion symmetry, also shows superconductivity above 20 GPa, which shows a huge upper critical field for $H \parallel [001]$.¹ On the other hand, YbIr₂Zn₂₀ exhibits a heavy fermion state exceeding 10 J/(K²· mol) around $P_c \simeq 5.2$ GPa.²

¹F. Honda, et al., Phys.Rev.B **81**, 140507(R) (2010), ²F. Honda, et al., J.Phys.Soc.Jpn. **79**, 083709 (2010)

INVITED PAPER