Determination of the superconducting gap in $Bi_2Sr_{2-x}La_xCuO_{6+\delta}$ ($x \sim 0.4$) from low-temperature specific heat

Y. Wang^a, Z.-Y. Liu^b, C.-T. Lin^c, and H.-H. Wen^{d,e}

^aSchool of Physics, Peking University, Beijing, China ^bDepartment of Physics, Shanghai University, Shanghai, China ^cMax-Planck-Institut für Festkörperforschung, Stuttgart, Germany ^dInstitute of Physics, Chinese Academy of Sciences, Beijing, China ^eDepartment of Physics, Nanjing University, Nanjing, China

Low-temperature specific heat (LTSH) of the monolayer high- T_c superconductor Bi₂Sr_{2-x}La_xCuO_{6+ δ} has been measured close to the optimal doping point ($x \sim 0.4$) in different magnetic fields. The identification of both a T^2 term in zero field and a \sqrt{H} dependence of the specific heat in fields is shown to follow the theoretical prediction for *d*-wave pairing, which enables us to extract the slope of the superconducting gap in the vicinity of the nodes (v_{Δ} , which is proportional to the superconducting gap Δ_0 at the antinodes according to the standard $d_{x^2-y^2}$ gap function). The v_{Δ} or Δ_0 ($\sim 12 \text{ meV}$) determined from this bulk measurement shows close agreement with that obtained from spectroscopy or tunneling measurements, which confirms the simple *d*-wave form of the superconducting gap.¹ Together with previous findings in La_{2-x}Sr_xCuO₄ over a wide range of doping, our studies demonstrate the virtue of LTSH as a bulk method to probe the superconducting gap near the nodes in high- T_c cuprate superconductors.

¹Y. Wang, Z.-Y. Liu, C.-T. Lin, and H.-H. Wen, Phys. Rev. B 83, 054509 (2011).